CO₂ Fixation in Polymers

Thomas E. Müller

Center for catalysis research, ITMC, RWTH-Aachen, Worringerweg 1, 52074 Aachen, Germany

Introduction

The utilization of CO_2 formed during burning fossil fuels as chemical feedstock places new opportunities to avoid the release of CO_2 into the atmosphere. CO_2 can be reacted directly with highly reactive chemicals to form products with lower exergy than the sum of the starting materials. A typical example is the copolymerization between epoxides and CO_2 to form aliphatic polycarbonates. Alternatively, CO_2 conversion can be achieved by removal of a byproduct from the reaction equilibrium or by coupling with an exergonic reaction. An example is the synthesis of dimethylcarbonate by direct methanolysis of CO_2 whereby the byproduct water is removed to shift the equilibrium to the products.

Experimental

For the methanolysis of urea, a mixture of methanol (30 ml), urea (2 g) and catalyst (0.5 g) was heated in a 70 ml autoclave. After 4 hours, the product mixture was analyzed by gas chromatography.

Direct CO₂ fixation in co-polymers

Carbon dioxide can be utilized in the synthesis of aliphatic polycarbonates by copolymerization of CO_2 and epoxides. Suitable catalysts are, e.g., ZnEt₂ activated by trace amounts of water (1), zinc oxide (2), salen complexes (3), double metal cyanides of iron and zinc (4), zinc glutarate (5) or rare earth – zinc catalyst mixtures (⁶). While mostly ethylene and propylene oxide were used, other epoxides, such as limonene oxide are also suitable (7). Recently a copolymer synthesized by this route came into industrial production in China (8). There is a possibility that the substitution of purely aliphatic polymers by polycarbonates will reduce alkene consumption and CO_2 emission into the atmosphere by millions of tons, since CO_2 is fixed in 50 wt-% in the CO_2 -ethylene oxide copolymer (1).

Synthesis of dimethylcarbonate

Alkyl carbonates are a valuable feedstock for chemical synthesis and, e.g., can be converted to polycarbonates. The direct synthesis of dialkylcarbonates from alcohols and carbon dioxide is equilibrium limited to conversions below 10%, but can be accomplished starting from orthoester using organotin compounds like Bu₂Sn(OMe)₂ / Bu₄PI as molecular catalysts (9). Likewise, urea can be reacted with methanol to dimethylcarbonate. Among various oxides, zirconia (Fig. 1) and tin oxide provided the highest catalytic activity. An approach for the direct synthesis of dimethylcarbonate from methanol and CO₂ is to remove the by-product water using a dehydrating agent (¹⁰).

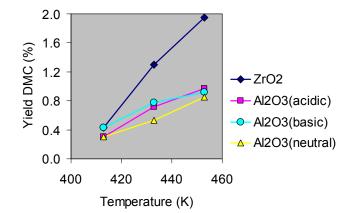


Figure 1. Comparison of catalyst activity in the methanolysis of urea.

Conclusions

As new technologies are emerging, the direct utilization of CO_2 as chemical reagent appears to be a possible strategy to avoid carbon dioxide emissions into the atmosphere. Scientific and political interests meet leading to strongly increased awareness in this field.

References

- (1) Koinuma, H. React. Funct. Polymers, 2007, 67, 1129.
- (2) Huang, s.; Liu, S.; Li, J.; Zhao, N.; Wie, W.; Sun, Y. Catal. Lett. 2007, 118, 290–294.
- (3) Darensbourg, D. J.; Mackiewicz, R. M.; Phelps, A. L. and Billodeaux, D. R. Acc. Chem. Res. 2004, 37, 836-844.
- (4) Darensbourg, D. J.; Adams, M. J.; Yarbrough, J. C. and Phelps, A. L. *Inorg. Chem.* **2003**, *42*, 7809-7818.
- (5) Ree, M.; Hwang, Y.; Kim, J.-S.; Kim, H.; Kim, G.; Kim, H. Cat. Today 2006, 115, 134–145.
- (6) Quan, Z.; Wang, X.; Zhao, X.; Wang, F. *Polymer* **2003**, *44*, 5605.
- (7) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B. and Coates, G. W. J. Am. Chem. Soc. 2004, 126, 11404-11405.
- (8) Kawaguchi, T.; Nakano, M.; Juni, K.; Inoue, S.; Yoshida, Y. *Chem. Pharm. Bull.* **1983**, *31*, 1400–1403.
- (9) T. Sakakura, Saito, Y.; Okano, M.; Choi, J. C. and Sako., T.; J. Org. Chem., 1998, 63, 7095.
- (10) Choi, J. C.; He, L. N.; Yasuda H. and Sakakura, T. Green Chemistry, 2002, 4, 230–234.